I I TAVAT TAVAT VA ITAVA VA IT

Seat No. ___

HJ-161100010403 B. B. A. (Sem.-IV) (CBCS) (W.E.F. 2016) Examination April - 2023 Statistics for Business Decision Making

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

- 1 (a) Explain in short : Types of problems in decision making 7 under different environments.
 - (b) For the following Pay-off matrix find the best act using(i) Minimax
 - (ii) Laplace

States of nature							
Alternatives	S 1	S2	S 3	S4			
A1	3	5	8	-1			
A2	6	5	2	0			
A3	0	5	6	4			

OR

For the following Pay-off matrix find the best act using
 (i) EMV (ii) EOL (iii) EVPI criterion.

States of nature Alternatives **S**1 S2 **S**3 **S**4 5 A1 3 8 -1 A2 6 5 2 0 A3 0 5 6 4 Probability 0.6 0.1 0.2 0.1

2 (a) Give the difference between the chart for variables and chart for attributes.

HJ-161100010403]

[Contd...

7

14

1

Sample No.	1	2	3	4	5	6	7	8	9	10
No. of inspection item	n 50	50	50	50	50	50	50	50	50	50

2

0

2

1

12

8

0

3

14

(b) Draw ρ chart for the following data and save your conclusion.7

OR

8

2 Draw \overline{X} and R chart for the following data and save your conclusion.

4

Sample No.		1	2	3	4	5	6	7	8
	X ₁	32	30	39	50	41	50	44	23
Observations	X ₂	37	32	52	42	45	29	52	32
	X ₃	42	40	29	31	34	20	36	44
F.G.1	a .	1 0 0		0 D					

[Given for n = 3, $A_2 = 1.023$, $D_3 = 0$ $D_4 = 2.575$]

No. of Defective items

- 3 (a) What is Business Forecasting ? Explain different methods 7 of forecasting.
 - (b) Fit a Straight line to the following data :

Year	1991	1992	1993	1994	1995
Production	20	35	45	40	25
in ('000 tons)	20	33	45	42	23

OR

3 Obtain the equation of second degree parabola from the 14 following data. Also obtain the estimated production for 2000.

Year	1990	1992	1994	1996	1998
Production	12	4	6	11	8

- 4 (a) Explain the following terms :
 - (i) Null hypothesis and Alternative hypothesis.
 - (ii) Type I and Type II errors.
 - (b) The mean life time of 100 LED bulbs produced by a company is computed to be 1570 hours with a standard deviation of 120 hours. The company claims that the average life of the LED bulbs produced by the company is 1600 hours. Is the claim justified ? Use 5% level of significance.

OR

HJ-161100010403]

[Contd...

2

7

7

7

- (a) Explain the One-tailed, Two-tailed Test and Decision Making 7 with figures.
- (b) In City A proportion of female birth in 886 births was 48.50% while in city A and B combined this proportion in 1286 births was 51.6%. Can we conclude that the proportion of female births in city B is more than city A ? (Use 5% one tail test).
- 5 (a) Give Assumptions, Properties and Uses of t-distribution. 7
 - (b) Certain fertilizer is packed into bags by a machine. A random 7 sample of 10 bags is drawn and their contents found to weigh (in kg) as follows :
 50, 49, 52, 44, 45, 48, 46, 45, 49, 45. Test if the average packing can be taken to be 50 kg. (Use T_{tab} = 2.26)

OR

5 From the following information find the value of F statistic and Test the hypothesis that population variances are equal. (Use $F_{tab} = 2.9$)

Sample	Size	Mean	$\sum (x-\overline{x})^2$
1	10	12	120
2	12	15	314

7